ABSTRACTS

EXPERIMENTAL STUDY OF HEAT TRANSFER
IN MESHED MATRICES

E. I. Mikulin and Yu. A. Shevich UDC 621.565.93.001.5

The article presents results of a study concerning metallic meshes of fine wire up to 30 p in diame-
ter. They are used in high-efficiency regenerators for gas refrigerators and they yield a compactness of
up to 4+ 104 m?/m?,

Existing data on the heat transfer in such matrices [1-3] are most contradictory (Fig. 1). The test
values given in [1] and [2] range between dashed lines 1, while the test values given in [3] range between
dashed lines 2. A comparison of these results indicates a wide dispersion, more than by one order of mag-
nitude at low and medium values of the Reynoldsnumber. The matrices studied in [1, 2] were short, i.e,, had
a small H/D, ratio (for example, the number of meshes per packet in [1] did not exceed 40) while the mat-
rices in [3] consisted of many densely packed meshes (300-790). Here H denotes the length (height) of a
packet (n the direction of the flowing stream and D, denotes the equivalent diameter of the matrix channels,

In order to explain this dispersion of values and to obtain reliable data, the authors had built an ap-
paratus with which both the heat transfer and the resistance could be measured in matrices consisting of
any number of packets, from one to several hundred, in a steady stream

N; L over a wide range of the Reynolds number. Steady flow was ensured by
i 374/% a continuous generation of heat within the matrix mass by alternating
10’ » ]/ L5 _] electric current. The heat was carried away by an air stream blowing
8 g7/ /75 f; on the matrix, With this stand we tested packets consisting of meshes
6 "/ 7z , in three sizes: No, 004, No. 0071, and No, 0112; we tested 19 models
B d with different relative lengths.
NN TS indicate di |
2% 7‘/ » li\/ : . Our results c?early indicate different heat transfer characteris-
%/ // %Qy tics for matrices with different numbers of meshes per packet. In Fig.
0 z6/ - &) 1 are shown the data for six matrices with a No, 004 mesh (solid lines
g 7 Pt N 3-8). As the number of meshes is increased or, more precisely, as
. LAY the relative length H/D, of a matrix is increased, the heat transfer
5 \ \ proceeds at a lower rate, The maximum heat transfer occurs with one
2‘ <§Q }), \lz mesh or two meshes per packet,

. @\g) These data on heat {ransfer are generalized by using the Reynolds
/a; Y ' number Re and the relative length H/De, The criterial equation of heat
A \ transfer in matrices with densely packed fine meshes is, for H/D, in

St 2 5 4 5 3mE 2z 3 re the 2-210 range
Fig. 1, Heat transfer in ) H s
meshed matrices: 1) range Nu = 1-21Reﬁ'47(7) Re (I
of data in [1, 2]; 2) range of ©
data in [3]. Our data for a and for H/Dg > 210
mesh No, 004 with: 3-3) H
/D¢ = 1.1-2.2; 4-4) 5.5; 5- Nu = 0.05Re™%. (2
5) 16.5; 6-6) 27.5; 7-7) 45; The Reynolds number in Egs. (1) and (2) varies from 10 to 500,
8-8) 212.

The wide variation in the heat transfer rate following a change in
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the relative length can be explained according to the model of a mesh matrix where the stream is treated
as an internal flow along channels of complex shapes., Moreover, the mesh packing reduces sharply the
turbulence intensity in the entering stream. One may assume, therefore, that increasing the number of
meshes has a stabilizing effect on the stream,
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THERMOPHYSICAL METHOD OF MEASURING THE
TEMPERATURE CHARACTERISTIC OF
ELECTRICAL RESISTANCE IN METALS

A, G. Merzhanov, Yu. M. Grigor'ev, UDC 537.723.537.312.6
Yu. A. Galtchenko, and V., V. Barelko

A method is proposed for measuring the temperature characteristic of electrical resistance in metals
by heating a thin metallic filament with a constant electric current in an inert-gas atmosphere under known
flow conditions, In such tests one measures the current through and the voltage drop across the filament,
from which one then calculates the filament resistance and the electric power in the given heating mode.
Two procedures have been developed for determining the temperature, both based on the laws of convec-
tive heat transfer at a filament in a stream under large temperature drops.

The first procedure is as follows. With the test specimen in a steady state, one determines the rela-
tive filament resistance R/R0 as a function of the electric power P at two different stream velocities and,
on the basis of these data, one plots an R/R, = f(n) curve with » denoting the difference in electric power
necessary to heat the filament to the same temperature at different stream velocities (different values of
the convective heat transfer coefficient), The magnitude of w does not depend on the emissivity of the ma-
terial and, together with certain known criterial relations, it yields the filament temperature,

The second procedure involves the use of a reference filament with a known temperature-dependence
of its electrical resistance. Having determined R/R; as a function of n for the test material and the tem-
perature T as a function of ny.r for the reference filament, one can compare the values % and ref, thus
correlating the quantities R/R, and T for the test material. In this method of determining the filament tem-

perature one does not have to know the convective heat transfer coefficients nor have to measure velocities
of the oncoming stream,

These procedures have been checked experimentally. The temperature characteristics of electrical
resistance, which have been thus determined for copper, silver, and VR-5 alloy over a wide temperature
range (approximately 1000°C), agree closely with published data,
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DETERMINATION OF THE MELTING TIME FOR A
HEAT CARRIER IN A PIPE SEGMENT HEATED
AT ONE END

B. A. Solov'ev UDC 536.3

The heating and the melting of a liquid-metal heat carrier in a pipe with thermal insulation at one
end and a heat source at the other end, and with heat radiating into the ambient medium, are described by
a system of equations consisting of a nonlinear second-order differential equation and an integrodifferential
equality with appropriate boundary conditions of the first and of the second kind., A conversion into dimen-
sionless form has made it possible to reduce the number of independent variables, to solve the system of
equations on a computer, and to present the results graphically in terms of relative melting time 7 = 7
/(L%p/A) as a function of the pipe transmittivity parameter ¢y = £,00T§, L¥(AF) and of the referred am-
bient temperature 6, = T,/ Ty — with the temperature at the hot end given either referred to the melting
temperature 6;, = T;,/T,, or to the relative length of the pipe segment 6, = 36;,/3(x/L) (which corre-
sponds to constant thermal input power to the hot end). The graphs plotted for potassium, sodium, and
lithium can be used for solving various problems related to melting these heat carriers in pipes of various
shapes. The use of these graphs is illustrated on several examples.

NOTATION

is the cross section area;

is the radiation perimeter;

is the pipe length;

is the space coordinate;

is the melting temperature;

is the radiation temperature of the ambient medium;
is the temperature at the hot end;

is the referred emissivity of the pipe surface;
is the density;

is the specific heat;

is the thermal conductivity;

is the Stefan —Boltzmann constant;

is the time,
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PULSE HEATING OF A PLATE WITH FINITE WIDTH
SEPARATING TWO MEDIA

S. A, Drozdov and V. F. Salokhin UDC 536.212

The temperature of a heat source is calculated theoretically; this heat source being located on the
plane boundary between two semiinfinite media with different thermal properties (a;, &), (@,, &, and hav-
ing the shape of a strip with finite width 27 which at time t = 0 is activated at a constant (in {ime) and uni-
form (over the surface) thermal flux density q. Such models come up in the development of pulse methods
for thermophysical measurements with the use of thin-film resistance probes, and they are of interest for
the calculation of thermal fields in microelectronic circuitry.

Disregarding the thickness and the specific heat of the source, the authors have obtained the follow-
ing expression for its mean temperature as a function of time:

. Vi 2wVt o
20qV't ¢ { (‘ g ]
T{t) =~ { ] o —— ¥, (£) df — —— WoE) — |,
( ertenV n [ n j (&) dt ve ) @ =
0 2AVE

Yy () = {31 [‘D (foy) — "Eg_*w ( iy jﬂ:)l E_al? —&, [m (ioty) ~'E—1,_co (ioaz &;)} e a%}
Vi Vi Vi m

where w(z) = e'zz[l + 2iAT e‘szdg] is the complex error function and

Pty

2 2 2
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Furthermore, the asymptotic behavior of this solution is examined in the case of short and long time
periods, For t— 0, specifically,

20V l VF ]
T~ [— b (ky, ko ) |,
® (ey + az)lfn 2V ' e)

o _ L kgk, ) kg 1~ 2 o Z{arccosv at y <1,
TT L, I1—r | [n-e — Archy at y>1,
kg -+ By a g,
gt B2 = R e

1+kok, ay &

The factor outside the brackets represents the solution to the one-dimensional version of the problem,
where the width of the heat source increases infinitely; the expression inside the brackets determines,
accordingly, the edge effects. This formula yields the validity criterion for the one-dimensional solution,
namely

Fy € 4ndl.

NOTATION

an is the thermal diffusivity of a medium;
[N is the thermal activity of a medium;
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t is the time;
Fy = apt/i?  is the Fourier number.

782



INTERNAL HEAT TRANSFER IN A PLATE UNDER
NONLINEAR BOUNDARY CONDITIONS

B. Ya. Lyubov and N, I. Yalovoi UDC 536.3.536.25

The solution to the differential equation of heat conduction

dv 02
AL 1
ot 0x? (1)
for a plate with a nonlinear boundary condition
d
ol =P D (2)
at the surface, with a symmetry
du
B =0 3
0x x=0 (3)
and with an arbitrary initial temperature distribution
Vg = (9 (4)
is found in the form
_ 201 (1—x)* () (1 __x)ﬂn-H (n)
ot o= B e @+ Y e @, (5)
n==0 =0

where
V(1) =—Flo(v), 1l

Function ¢(71) is determined from the integral Volterra equation of the second kind. In the case of a
parabolic initial temperature distribution, for example, we have

T
@ (1) = v; — 2A0,D; (T)+§F[q>(z), @, (v —98) dt, (6)
0

where

n2g?

T
D (1) = 71; + 2 E = exp (— n2k?1),
*=1

Dy ()= 1+2 ¥, exp (—nk).

k=1
With ¢(7) determined from Eq. (6), it is simple to obtain the values of ¢ (1) and ¥{®) (1) needed for
calculating the temperature across a body section.

Two specific problems are analyzed on the basis of this theory: heating of a plate by thermal radia-
tion and heating of a plate when the heat transfer coefficient varies as a function of time.

NOTATION

vix, T = T(x, /T

m’
T = at/R%
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X=X/R;

T, 7) is the temperature function of the plate;

Tm is the temperature of the heat emitting medium (if this temperature varies as a function of
time, then Ty, is its maximum value);

X is the space coordinate;

2R is the plate thickness;

a is the thermal diffusivity;

t is the time;

vy is the surface temperature;

Avy is the initial temperature drop across a plate section,
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HEAT CONDUCTION WITH AN ARBITRARY PERIODIC
VARIATION OF THE HEAT TRANSFER COEFFICIENT
AND OF THE AMBIENT TEMPERATURE

B. Ya. Lyubov, N, I. Yalovoli, UDC 536.2.01
and I, N, Manusov

The problem of heat conduction in a plate is analyzed for the case where both the heat transfer coef-
ficient o(7) and the amblient temperature T, (7) are periodic functions of time. It is assumed that functions
a(7) and T4(7) satisfy the Dirichlet condition.

The solution is obtained by a combined application of the operational method and successive approxi-
mations.

Simple harmonic fluctuations of the heat transfer coefficient and of the ambient temperature

q,
Bi {Fo)= —— - g, cos Pd Fo,

2
(1)
ve(Fo) = %’— ~+ ¢; cos Pd Fo
are analyzed thoroughly here,
The calculation formulas for this case are
g, ¢ X fa ) a
vy (Fo, X) = —20—70 @o(—Q* , F0>—i—(ﬂ1,—2° +0 “QL)
Fo Fo
/ X ] x
X Y@o (—2~ i Fo—t) cos Pdidt + ay¢ \] 9, (—2« s FO—t)coszpdtdt, (2)
0 ! 0
and
FS x Fﬁo X
v (Fo, X) = — %o \ 8, (— , Fo —t) oy (E, Ddft—ay & B, (-—« R Fo—t) vy (¢, 1)cosPdidt, (3)
2 ) 2 B 2 /
0 0
where

E=1,2,3, ..
@

8, (z, 1) =12 2 {(— 1)*exp (~— m2k%) cos ke
k=1

L]

Graphs representing approximations of the temperature function prove the convergence of this meth-
od, because the second approximation lies between the zeroth and the first one, the third approximation
lies between the first and the second one, etc.

An analysis of expressions (2) and (3) shows that the process of successive approximations is suf-
ficiently convergent only when ¢,/2 < 1 and aq < 1. In view of this, a modified solution is given here suit-
able for practical use within the ¢)/2 > 1 and @, > 1 range.

The concept of this method can be easily extended to bodies with other shapes.
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NOTATION
Va(Fo) = (Ta(FO)—T())/(TA—To);

T, is the initial plate temperature;

Ta is the amplitude of fluctuations of ambient temperature;
Fo = a1/R* is the Fourier number;

Bi(Fo) = a (Fo)R/x;

Pd - Fo is the dimensionless cycle time;

Pd is the Predvoditelev number;

X = x/R is the referred space coordinate.
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CALCULATION OF THE EIGENVALUES IN THE
PROBLEM OF HEAT TRANSFER DURING LAMINAR
FLOW THROUGH A CIRCULAR CHANNEL

Yu. V., Vidin, Yu. A. Pshenichnov,
and A. K, Fedyukovich UDC 532.595

In [1] was given an analytical solution of the temperature field in a laminar stream of fluid flowing
through a circular channel and heated externally by convection, In order to use this equation in engineer-
ing, one must know the numerical values of the characteristic roots u,, the eigenfunctions an, and the con~
stant coefficients A, of the expansion. These values were given in [1] for only a very narrow range of the
Biot number, however. For this reason, values of up, ¥,, and A, have been subsequently calculated by
computer for a much wider range of the Biot number, The results have been appropriately tabulated,

The eigenvalue and eigenfunction problem (the Sturm — Liouville problem) is to find a solution to the
system of equations

¥

W’”i‘T‘i‘HZ(I—RZ)‘P:O’ (1)
P =0 at R=0, (2)
¢ = —Bip at R=1, (3)
The integral of this system is sought in the class of special functions. As has been shown in [2], the
general solution to problem (1)-(3) can be written as
R2
P = exp (fu T> Fola, v, pRY), (4
where F, (o, v, uR? is a confluent hypergeometric function defined in terms of the infinite sum;:
o3 a (a4 1) piRt
F y I3 2 =1 = — Rz I e 5
o, v, pRE) T +—v(v+1) o T (5)

In this case @ = 1/2 — u/4 and v= 1. Then Eq. (4) transforms into

Re 2—p) 2 — (6 —pp* R
‘I’———exP(—MT)[I—i—( 4p M.’?”~l—( pm up-al‘)‘g—r---].

(6)

Inserting (6) into the boundary condition (3), we obtain an equation for the eigenvalues:
2—p  E—pE—pp , 62— w6— W10 —pu?
" {l——[ R

+

2 4.2 43.(3))z
C—pp  C—wWG—pp*  C—pE—w(l0—ppd et U
x| S 64-3)? o]} = 4

The series in (6) and (7) are known to be convergent. Only the first twenty terms were used in the
computer calculation., The contribution of the remaining terms was insignificant, For the beginning, the
first three roots of the characteristic equation (7) were thus determined. As the starting point, the auth-
ors used the roots corresponding to a boundary condition of the first kind, i.e., to Bi — = (u; = 10.6734,
Mg = 6.6790, and p, = 2.7044). The procedure for calculating Uy was based on a discrete decrement of p
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in (7) in Ap = 0.0001 steps. As the target value of un was chosen that which would convert Eq. (7) into an
identity at a given value of the Biot number.

The eigenfunctions ¥;, ¥,, and ¥; were then calculated according to Eq. (6). Coefficients Ay of the
series must satisfy the boundary condition at the channel entrance:

i An‘l’n= L

n=|
The constant coefficients A, are found with the aid of this last expression, taking into account the
orthogonality of eigenfunctions ¥,.
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CALCULATION OF THE BOUNDARY LAYER AT A
THIN PLATE HEATED SIMULTANEOUSLY BY
RADIATION AND CONVECTION

V. V. Ivanov and I. L, Dunin UDC 532.526:537.312.51

The anthors analyze the compound heat transfer at a surface with a boundary layer heated from the
other side simultaneously by thermal radiation and coanvection, The analysis is based on a laminar bound-
ary layer and a thermally thin wall.

Applying to the original system of heat transfer equations

% . _ 90
ax ' oy ay*’
3
a6 eoelc
Bl g1 =0, 1
3 5 KA -0+ ] at v (B
9=9m at y > w, (2)
Tw T, 9 i
= B — 2 ], K=
0<e°° Tc <6 Tc <l K EO'OT‘?_. s (3)
the nonlinear integral transformation
r : 48
= — T = _ F Py 6 4
W= |- p | e et 6, 0 @
1]
leads to a problem where the boundary condition (2) is linear:
ow oaw [GZW
Ly S — g e L
i Pl v % aLay2 LF (x, g)], (5)
06/0y 2
= (K - 48% — ), 6
Pl 9= o [ g | K 40— (6)
Fi74 scro?‘g
—_— = = 7
» r % W at y=0, {7
W =exp —pf (K, B) = Wo at y—- . {8)

Group (6), which appears in the transformed energy equation (5), is minimized by means of parame-
ter p. The condition that F(x, y) — 0 is obviously satisfied when p — K + 46°, The unknown temperature
# = 6(x, y) is then found from relation (4) and the known solution to the linearized problem for W = W(x, y).

The accuracy of the final results is evaluated by a bilateral error estimation, which also reveals the
necessary accuracy criteria of the calculations.

The usefulness of this method is illustrated on several examples. A comparison of the calculated
surface temperature with numerical values obtained by E. Sparrow and S. Lin confirms that the proposed
method is highly accurate and reliable. It is also established that, within the given range, the values here
do not differ from computer results by more than 1%,
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EFFECT OF AXIAL HEAT CONDUCTION THROUGH A
PIPE ON THE TEMPERATURE OF THE PIPE WALL
AND OF THE GAS STREAM INSIDE IT

G. G. Matlin UDC 536.24:621.365

In the one-dimensional formulation of the problem, the temperature of a gas stream in a pipe t and
the temperature of the heat dissipating pipe wall T are calculated, taking into account axial heat conduction
through the pipe wall. The thermophysical parameters are assumed constant and axial heat conduction
through the gas is disregarded. The cross section area of the wall f, the heat dissipation perimeter p, and
the wetted perimeter py, are assumed constant, also the initial heat dissipation per unit length q and the in-
itial coefficient of heat transfer from wall to gas «.

The problem reduces to the following equation with two dimensionless parameters K and L:

d do
- 4+ L ——Kb0=-—K, 1
= + & K (1)
where
x (t—Hap apl® apl p
B L = e
5 1 q Af cpG Pw dp

Parameter K characterizes the combined effect of convective heat transfer and axial heat conduction;
parameter L is proportional to the pipe length referred to the pipe diameter dy,.

With 0 known, t and T are determined from the eguation

3
L 0g
=t | 0@, =it
.
0

An equation analogous to Eq. (1) is also given for the dimensionless wall temperature T = (T—ta)epG
/ql; like Eq. (1), this equation too involves the parameters K and L.

The solutions to these equations depend on K and L, but also on the dimensionless quantities which
appear in the boundary conditions, For illustration, the problem is solved with either the thermal fluxes
across the wall ends and the conditions of heat transfer between the end surfaces and the gas stipulated,
or with the wall temperature at the pipe ends 7, and 7, given while t, = t5. Calculations show that, if the
effect of axial heat conduction is negligible (when K — «), 6 = 1 within 0 < £ <1. The effect of heat con-
duction on § becomes greater, generally, as K decreases and L increases. It is to be noted, however,
that at given values of K and L there are such values of the boundary parameters which will make 6 = 1
along the entire pipe (in the second case, for example, one can find these values by letting T, = 1/L and
T, =1+ 1/L).

At sufficiently high values of K, 6 = 1 accurately enough within some middle segment of the pipe; as
K increases, this segment becomes longer and at the limit, K — e, it extends over the entire pipe except,
perhaps, its ends. Within this segment 7—t = const = q/op while the values of T and t differ by the con-
stant term 6t = L/K from those calculated without accounting for heat conduction. Pipe segments where
6 = 1 are zones under an appreciable influence of end effects.

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 22, No, 6, pp. 1124-1125, June, 1972. Orig-
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Equation (1) is easily extended to the case where q and « are known functions of §.

tion to this equation is obtained for @ = const.

NOTATION

is the length of pipe;

is the space coordinate measured from the pipe entrance along the stream;
is the hydraulic diameter of pipe;

is the gas flow rate;

is the Stanton number;

is the thermal conductivity of pipe wall;

is the specific heat of gas;

is the gas temperature before entering the pipe;

is the gas temperature at the pipe entrance,

A general solu~
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TRANSIENT TEMPERATURE FIELD IN AN ANISOTROPIC
PLATE UNDER A GIVEN THERMAL FLUX AT THE EDGE

Yu. M, Kolyano aanad V. I. Gromovyk UDC 536.12+539.376

A semiinfinite anisotropic plate is considered at the edge of which a given thermal flux varies as a
function of the space coordinate and of time q(y, 7). The initial temperature of the plate is zero. A gener-
al solution to the problem of transient heat conduction is obtained for this plate by means of integral Four-
ier transformations with respect to coordinate y and the Laplace transformation with respect to time 7.

For the case where the thermal flux at the plate edge is given as

N
9. V=S, () Y, SE)—SE).
n=0
with S(y) and S_(7) denoting the symmetric and the antisymmetric unit functions respectively and with N=0,
+1, #2, ..., 2y = y—nc—(2n + 1)d, the following expression is obtained for the transient temperature field
in the plate:
N y_—kxyx

T= v i‘—r Ko (0, ®)
TV kb, — £, 00 B &

n=(0 y+—-kxyx

Here

[i:]
_{ e N} de _ .
v fo (o0 2] e/ 55

0

2
m=2axrl/—__ky_kxy2 —; Q=Z—°; by = 3”-”—; kyz%;
€2+ xz(ky_._ kx_t/) 11 7‘11 11

u? = ozz/)\ﬂé, with @,, Aj;, and a denoting the heat transfer coefficient at the lateral plate surfaces (z = £9),
the thermal conductivity, and the thermal diffusivity respectively; x, y are the space coordinates of the
plate and ¢ is the distance between segments of the edge surface x = 0, at which the thermal flux has been

specified,

The obtained solution is valid for an infinitely large anisotropic plate with an array of equidistant
slots, length 2d, at the edges of which the thermal flux specified at time t = 0 remains constant thereafter,

For a plate of grade KAST-V glass-Textolite with a single slot, it is explained how the degree of or-
thotropy and the heat transfer from the lateral surfaces z = %6 to the ambient medium affect the steady-
state temperature field, and how the degree of orthotropy affects the transient temperature field in a ther-
mally insulated plate. The numerical results, presented graphically, indicate that the temperature in a
thermally insulated plate rises with time. Simultaneously, also the relative effect of orthotropy in the ma-
terial increases. The steady-state temperature field decreases as the rate of heat transfer from the lat-
eral surfaces rises. The relative effect of orthotropy also decreases then,

Institute of Physics and Mechanics, Academy of Sciences of the Ukrainian SSR, 1.'vov. TranslatedfromIn-
zhenerno-Fizicheskii Zhurnal, Vol, 22, No. 6, pp. 1125-1126, June, 1972. Original article submitted
March 23, 1970; abstract submitted January 21, 1972.
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APPROXIMATE METHOD OF CALCULATING TRANSIENT
THERMAL PROCESSES IN A MULTILAYER MEDIUM

N. P. Gaponenko UDC 536.24

An approximate method is proposed for calculating transient thermal processes in a multilayer wall
with a known law of power variation at one surface. The calculation of the temperature field in such struc-
tures can be simplified, if one assumes that during a step change in power:

1. the layers farther removed from the power source than a given layer do not affect the stabiliza-
tion of the temperature difference between the beginning and the end of any segment of the multi-
layer structure;

2. when the temperature difference between the beginning and the end of a given layer has not yet
reached its maximum possible magnitude, at every point in the layers preceding the given one the
temperature rises by an amount equal to the temperature difference between the beginning and the
end of that given layer.

The first assumption makes it possible to assign a zero temperature at the boundary of the given re-
gion; the second assumption allows the differential equation for the preceding layers to be averaged over
their respective thicknesses. As a result, the processes of heat transfer in the i-th layer are described
by a self-contained system of differential equations:

2o, 108
> T 2T Y
9x? "z at
a6; q 00;
—_ = - M; — = 0);
ax A -+ M; o (x = 0);

8;=90 {x =d;),

and the temperature drop across the multilayer wall is represented by the sum of temperature drops across
all layers.

The method was proved out by simulating transient thermal processes on Re-networks. For com-
paring test results with calculations, expressions have been derived which relate the nominal values of the
RC elements to the parameters of a multilayer wall and to the criterial parameters appearing in the solu-~
tions to the self-contained system of differential equations,

This method is useful for calculating thermal processes which occur under any law of power genera-
tion in a multilayer wall.

Taganrog Institute of Radio Engineering, Taganrog, Translated from Inzhenerno-Fizicheskii Zhur-
nal, Vol. 22, No. 6, pp. 1126-1127, June, 1972. Original article submitted April 27, 1971; abstract sub-
mitted December 6, 1971.
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ANAL‘YSIS OF HEAT CONDUCTION IN
MULTILAYER SYSTEMS

N. V, Pal'tsun, V. A, Nikulin, UDC 536.21
and R, V Pal'tsun

The article deals with a multilayer system (any number of layers). It is assumed that the layers in
this system have each a uniform thickness. Each layer has a system of coordinates assigned to it, with
the origin on the upper boundary surface and with a common normal axis. The layers are numbered con-
secutively from top to bottom.

Some special cases of this problem had been analyzed earlier [1, 2].

The temperéture field in any layer is defined by a function which is the solution to a harmonic equa-
tion. Applying to this equation the complex Fourier transformation with respect to variable x (the x-axis
runs along the layer boundary) yields an ordinary second-order differential equation with constant coef-
ficients with respect to the transform of the sought function, The solution to this equation depends on two
arbitrary coefficients, and for the entire multilayer system on 2n coefficients (n is the number of layers)
which must be determined from the boundary conditions and from the continuity condition regarding tem-
peratures as well as thermal fluxes at interlayer boundaries. The continuity condition yields recurrence
formulas for the unknown coefficients, which makes it necessary to determine only the coefficients A; and
B, for the first layer. In fundamental boundary-value problems of heat conduction in a multilayer system,
the determination of A;, B, and thus also of the remaining coefficients, by virtue of the recurrence rela-
tion, reduces to solving just one linear algebraic equation regardless of the number of layers in the sys-
tem. Thus, for example, with the temperature given at the upper and the lower boundary of the system

Ty(% 0) =f(x); Tn(x,—ha) =0, (1)
the use of formulas here where A,, By are expressed in terms of Ay, By will yield Ay = Hy(¢, hy, hy, ...,
h,)B; with h, denoting the thicknesses of respective layers and function Hy, characterizing the thermophys-
ical properties of the system. The properties of function Hy, are established. In this way, in order to de-
termine the temperature field in the multilayer system, it is necessary only to use the theorem of the in-
verse Fourier transformation, '

The proposed method is illustrated on two problems with mixed boundary conditions, the solution of
which reduces to the solution of double and triple integral equations respectively [4].
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A PROBLEM OF HEAT CONDUCTION IN A
SEMIINFINITE HOLLOW CYLINDER

G. M. Bartenev, A. I. Zhornik, UDC 536.2.01
and E. M, Kartashov

The problem of the temperature field T(r, z, t) in a semiinfinite hollow cylinder r, <r <R is solved
for the most general initial and boundary conditions, encompassing the entire class of special problems
within this range.

Mathematically the problem reduces to solving the two-dimensional equation of heat conduction

or: ro oo 92*

o

2
or <a27‘ ! T aT), n<r<R z>0,t>0 (D

for the following initial and boundary conditions

T(r,z, §),_=A(r, 2), {(2)
oy ‘
* ar 4"=r1—_o62 re=ry =%lE D, <3)
ar
% 5| e T T g = 0@, (4
ar
—% s o +°‘st=0:% B, 1), {(5)

with o = 0—const and functions A(r, z}, C(z, t), ©(z, t), B(r, t) given.

The solution to problem (1)-(5) is sought in the class of functions to which the two-dimensional Lap-
lace transformation with respect to variables z, t is applicable and yields
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where v, are the roots of the equation
as Uy (YR) —yoa Uy (yR) =0,

and U;(VR), Uy("VR), Uy(val), JR), Ty, Y("R), Y(y,ry) is a combination of first- and second-order,
first- and second-kind Bessel functions of a real argument,

The obtained solution (6) covers the entire gamut of special solutions corresponding to specific val-
ues of coefficients «;j.
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NONUNIFORM MOTION OF A PARTICLE IN
A HYDROCYCLONE

Yu. N. Boldyrev UDC 541.123.012.5

For the design of ahydrocycloneit is important to know the velocity of a particle moving radially to-
ward the apparatus wall. This velocity determines the dwell time of a particle in the apparatus and the
productivity of the latter, During the motion of a particle relative to the apparatus wall there act on this
particle centrifugal and Coriolis forces of inertia, gravitational forces, forces due to the flow of liguid to-
ward the axis and the drain tube, and lift and drag forces. Inasmuch as most of these forces are functions
of the particle coordinates, the particle will move through the liquid in a nonuniform maaner. This re-
quires that the inertia term be taken into account in the equation of relative motion., The nonuniformity of
particle motion produces additional perturbations in the liquid, which are reflected in changes in its kinet-
ic energy. As a consequence, the particle encounters an additional drag which can be calculated by the
method of coupled masses.

By a projection of all these forces acting on a particle on the hydrocyclone radius, a differential equa-
tion is obtained which describes the relative radial motion of a particle and which reduces to the Bernoulli
equation, if the radial and the vertical velocity components of the counterflowing liquid are only weak func-
tions of the radius of revolution and if w = const.

The solution to the resulting equation is represented as

Re? 4AF ! +L c D
et = — ArFr — -y 2a(r—r gy ————
3 BT e T
4 E F F K
———Ar | o S T Ry — — |

3 (Eo gg + ,ég e?a(r rd) ::0)

with the Reynolds number Re = urd/v, the Archimedes number Ar = gdgA/povz, the Froude number Fr = ofr
/g, a = (3/4)§,(py/d(p + 1/2py),

1 !

4 — A —_—
Czd(p+2po>_ b rd_. g (p+ 290)_
6pyr ' retar—=ray’ gA ’

1
4Ad (9-1-790)
Fe—» = [ K=DE
6rap, g

3%190“;23 sin & 3Lz o Ug cosa —1 A

T Tw 12 1 B Aot
(o + 1/2 po) 4d<p+-—pu) wr
2 p-+1/2pq

VR and vg are the particle velocities along and perpendicular to the hydrocyclone generatrix. These vel-
ocities are assumed equal to the respective velocities of the liquid, which should be given. To the pro-
jections of these velocities of the radii correspond drag coefficients ¢, &, which are determined accord-
ing to the Reynolds number for a particle, ¢, is a drag coefficient, d is the particle diameter, o is half
the apex angle of the hydrocyclone ¢one, p is the particle density, p, is the liquid density, u, is the rela-
tive radial velocity of a particle (up = up—uy), up is the absolute velocity of a particle, uy, is the liquid
velocity, v is the liquid viscosity, A = p—p, is the density difference between particle and liquid, wis the
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angular velocity of a revolving particle, r is the radius of a particle revolution, and ry is the radius of the
drain tube.

Calculations based on test data have shown that the inertia term in the differential equation of motion
must be included in the design of a hydrocyclone for separating coarse suspensions, where a solid particle
moves in a vortex of liquid.



CALCULATING THE EFFICIENCY OF DUST COLLECTORS
FOR TRAPPING HYDROPHILIC AND HYDROPHOBIC
PARTICLES WITH LIQUID SPRAYS

R. A. Burtseva and A, T. Litvinov UDC 66.011+621.928.9

A method is proposed for calculating the trap factor and the efficiency of dust collectors for trapping
hydrophilic and hydrophobic particles with liquid sprays.

In the equations proposed earlier by various authors for calculating the trap factor and the trapping
efficiency no account is taken of the wettability of particles, but an empirical coefficient appears which is
based on a preliminary determination for a definite dispersion spectrum and operating conditions. For this
reason, calculated values differ appreciably from measured values, especially in the case of hydrophobic
particles,

Here an equation is shown which yields a satisfactory agreement between experimental and theoretic-
al values for the trap factor:

_ Vo
* T Ve F KL 0
where
Li — Yo lig-= Lif) 4 Kiig (2)
Ki;f

is a hydrophobic parameter which characterizes particles of trapped dust, The trapping efficiency is cal-
culated according to the formula

n

n = 2 €1 q; 1. (3)

f=}
The inertial path of hydrophilic particles is calculated according to the following equations:
a) for a Reynolds number in the range Re =< 0.2
Lig= Vs, (4
with 7 = d%p,/18 u;
b) for a Reynolds number in the range Re = 300

oVy 4B (5)
\

with v = 0.75 Apy/dp,, B = 0.75 Bu/dp,, and v = 4dp,/3Ap;.
The inertial path of hydrophobic particles is calculated according to the following equations:
a) for a Reynolds number in the range Re =< 0.2
bf =v(Vy —C), (6)

with C = (80/dpy) %%,
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b) for a Reynolds number in the range Re = 300

aVe+ B N

Lif =7y 1 .
if vnaC-i—ﬁ

The average diameter of liquid droplets in pneumatic and centrifugal atomizers is calculated accord-

ing to the formula

Dm=io‘§ ni/inﬁnz. (8

{=l f=l

The values of the trap factor and of the trapping efficiency calculated for hydrophilic and hydropho-

bic particles yield a satisfactory agreement with these and other authors’ test data.

exceed 0.05-0.80.

The error does not

The effect of particle wettability on the trapping efficiency is also discussed.

g, &
Vv, Vi
d

Dm, Di_
A, B
Py, Py
i

Lig: lig
n

di, 1
m

g

K

Stc = Vd%p,/18 uDpy

800

NOTATION

are the trap factors referred to particles in a single drop and to the i-th diameter;
are the relative velocity between particle and droplet, and referred to the i-th
distance from the droplet, m/sec;

is the particle diameter, m;

are the average diameter of droplets, and referred to the i-th dimension, m;
are the constants equal to 0.12 and 37 respectively for Re = 300;

are the density of medium and of particle respectively, kg/m?;

is the viscosity of medium, N -sec/m?

are the inertial path of hydrophobic and hydrophilic particles respectively, m;
is the trapping efficiency;

are the relative quantity of particles and droplets of the i-th fraction;

is the number of particle and droplet fractions;

is the surface tension of the liquid, N/m;

is the coefficient equal to 10.62 uD,/d%0, for Stc > 0.25;

is the Stokes number,



MASS TRANSFER DURING LIXIVIATION OF THE
SOLID PHASE FROM POROUS BODIES

G. A. Aksel'rud and V. D. Onishchenko UDC 66,015.23

The article deals with the kinetics of extracting the solid phase from a porous spherical particle in
which this solid phase forms spherical inclusions uniformly and continuously distributed over the entire
volume,

Wheun the porous particle is immersed in a solvent, all pores become filled with liquid and there fol-
lows a diffusion of solute molecules into the particle volume with a resulting loss of weight g by an indivi-
dual inclusion in accordance with the relation (2]:

5

—_ __o* — / .
=4npD (6 —c%), o ‘/ 4y (1)

_ s
of

The soluble inclusions are, therefore, sources of diffusing substance with an intensity —N(9g/ot) and,
consequently, the following equation applies to diffusion with spherical symmetry:

= . . 2
ot m at ( )
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The constraints on the unknown guantities ¢* = ¢*(r, t) and g = g(r, t) will be

f de

¢* (r, 0) = 0; ¢* (r, ) =0; ¢* (R, ) =0; (7?7),:0 =0
/9 (3)
g7 O =g g(r, o) =0 ka—f)_o =0.

When the porous particle contains much less soluble substance than necessary to saturate its pore
volume, i.e., when c* « cg, then the system of equations (1) and (2) becomes linear and under constraints
(3) we obtain the solution

3 @
u z - 9p S ! R
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At high concentrations of the substance to be extracted there form two regions within a particle [3}:
an outer region without sources of extractable substance and an inner region, within a radius r,, contain-
ing the soluble solid substance. Assuming the concentration of distribution to be quasisteady in the outer
region, and applying the integral relation in [3], we obtain the solution to Egs. (1) and (2) in the form

2
¥ 3 3 Fo _ o
- - (% w 2), (5)
1 B A 1
() S ) ) Q

These results represent an extension and a refinement of the kinetic equations derived earlier [1, 2].
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NOTATION

c* is the concentration of extractable substance in the liquid phase of particles, kg/m3;
g is the initial weight of a single inclusion, kg;

g is the weight of an inclusion at any instant of time, kg;

o radius of an inclusion, m;

¥ is the density of the inclusion substance, kg/m?

D is the diffusivity, m%/sec;

R is the radius of a porous particle, m;

N is the number of inclusions per unit particle volume, 1/m?;

m is the porosity of original specimen, m3/m?,

t is the time, sec;

T, is the radius of the region containing the extractable solid substance, m;
u is the total mass of extractable substance in a particle, kg/m3;

n is the weight fraction of inclusions in the final specimen;

% is the density of specimen, kg/m3;

cg is the saturation concentration of the solution, kg/m?

T = Dt/R? is the dimensionless time;

¢=1r/R is the dimensionless radius;

B = 2R%g/pdv;
P = mcs/m/p are the characteristic dimensionless parameters.
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STUDY OF GAS FLOW IN PARALLEL JETS

Yu. M. Rudov and V. N. Uskov UDC 533.5.72

The flow pattern in supersonic jets discharging from parallel nozzles was studied for a qualitative
evaluation. The inner wave structure of the flow is now described here along with the gas leakage charac~
teristics in various planes. On the basis of test results, an approximate method is proposed for calculat-
ing the parameters in the inner regions of multinozzle jets,

The experiments were performed in a supersonic gasodynamic tunnel and covered the following ranges
of parameter values: Mach number at the nozzle throat M, = 1.0-2.5, inefficiency of jet dischargen = 0.6-
31.4, divergence angle of nozzle cone o = 5-20°.

The following procedures and instruments were used for this experimental study. Shadow photographs
were obtained with the model IAB-451 optical instrument. The total and the static pressures within the in-
side regions of a jet were measured by means of separate venturis in conjunction with class 0.5 manome-
ters. The physical nature of the gas flow was studied on a "semimodel" test stand by, essentially, re-
placing the interaction between parallel jets with the interaction between a single jet and a plane solid wall.
In the course of this study, the pattern of gas flow was observed by visual means using various viscous
tracer substances.

An analysis of the experiments leads to the conclusion that the gas flow in the "interaction" plane
passing between jets is analogous to a discharge of plane jets: the tracer substance left on that plane ves-
tiges of a wave structure inherent to a jet. The optical patterns indicate also the region of jet separation
from the barrier,

The substitution of a solid wall for the interaction plane in a four-nozzle jet has made it possible to
measure the static pressure in the given plane, For this purpose, inductive DD10 probes were attached
at the drain holes in the metal plate.

According to the results of measurements, the first pressure peak corresponds to the location of an
obligue compression jump in the jet-plate interaction region. There follows a rapid expansion all the way
to the region where the jet separates. The second pressure peak is due to a compression jump in the re-
gion where the boundary layer separates,

An important item in the study of multinozzle jets was the variation in the Mach number along the
block axis. For the purpose of determining it, the total and the static pressures were measured at vari-
ous points along the four-nozzle jet axis. The analyzed data indicated a linear variation along such a mul-
tinozzle jet,

On the basis of this last test result and earlier conclusions concerning the two-dimensional mode of
gas flow in the interaction plane, an approximate method could be proposed for calculating the gasodynam-
ic parameters in the interaction plane.

The calculations are to be performed in the following sequence: from the known values of parameters
at the nozzle throat one determines the Mach number at the jet boundary and its inclination angle to the
axis; then the interaction parameters of the mixing jets are calculated by the formulas for an oblique com-
pression jump; then the two-dimensional jets in the interaction plane are calculated: then the Mach num-
ber before a straight jump in a component jet is calculated:; finally, a straight line of the Mach number
variation along the jet axis is plotted.
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POLYTROPIC PROCESSES IN VARIABLE-MASS SYSTEMS
K. A. Khairutdinov UDC 536.715.001
The equations of a polytropic process with a variable mass of ideal gas are derived as follows. In

the Gibbs equation dU = TdS—pdV + @dG one substifutes dS = sdG + Gds and obtains dU = TGds —pdV + idG,
but at the same time dU = udG + GeydT. Equating dU in the last two expressions and inserting

L LA N (A JRA
= Rd(\G)—T(V+ P G)
one obtains, after integration, an equation of state which relates the generalized potential, i.e., the pres-
sure to all generalized coordinates of the system [1]:
V%
P ( ?) exp (—s/cy) = const. (1)

The equation of a polytropic process can be found by adding to expression (1) those which relate
changes in entropy and in mass to changes in volume, and which ensure a constant polytropic exponent in
the process GVY = GyV{ = const, VJexp(_s/cV) = V}}exp(_si/cv) = const, As a result,

v canst. (2)

The equation for the temperature in a polytropic process is

TV E=DUENY o const, (3)

When ¢ = 0 and vy = ~1, Egs. (2) and (3) describe the suction and the delivery process in theoretical
cycles of displacement machines,

It is shown that in a polytropic process with a variable mass the specific heat remains constant, In-

2
tegration of Eq. (2) yields expressions for the compression work I, =5f pdV and for the useful work Lo
2

- | vap. '

A method of calculating the efficiency of processes with a loss of active substance is also discussed.

He a8 <% o e o

NOTATION

is the internal energy of a system;

is the specific internal energy;

is the entropy;

is the specific entropy;

is the pressure;

is the volume;

is the chemical potential;

is the mass;

is the specific enthalpy;

is the gas constant;
Cy is the specific heat at constant volume;
“ is the adiabatic exponent,

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 22, No. 6, p. 1134, June, 1972, Original
article submitted March 1, 1971; abstract submitted December 3, 1971. )
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